#10

Calculate the solubility S ($\frac{\text{mol}}{\text{L}}$) of CaF₂ in a Ca(NO₃)₂-solution 0.100 $\frac{\text{mol}}{\text{L}}$.

$$K_{sp_{CaF_2}} = 3.9 \times 10^{-11}$$

Solution

CaF₂(s)
$$\longrightarrow$$
 Ca²⁺(aq) + 2 F (aq) $K_{SPCaF_2} = \left[Ca^{2+} \right] \times \left[F^{-} \right]^2 = 3.9 \times 10^{-11}$

For every CaF₂-particle going into solution, 1 Ca²⁺-ion and 2 F⁻-ions are formed.

When dissolving in water, we can conclude that $[Ca^{2+}] = S$ and $[F^{-}] = 2.S$.

Because we are dissolving CaF_2 in a $Ca(NO_3)_2$ -solution, containing Ca^{2+} , the former expression no longer holds: most of the Ca^{2+} -ions were already present (supplied by the $Ca(NO_3)_2$) and only a few were supplied by the dissolving of CaF_2 . So we have to calculate the solubility starting from the latter

equation:
$$[F^-] = 2.S$$
 or $S = \frac{F^-}{2}$.

And since
$$\left[F^{-}\right] = \sqrt{\frac{K_{sp_{CaF_2}}}{\left[Ca^{2+}\right]}}$$
, the solubility in this case is $S = \frac{\sqrt{\frac{K_{sp_{CaF_2}}}{\left[Ca^{2+}\right]}}}{2}$

As we already mentioned, there are two kinds of Ca²⁺–ions in the saturated solution:

- Ca^{2+} -ions already present before dissolving CaF_2 : c_0
- Ca²⁺-ions supplied by the dissolving of CaF₂: S

$$S = \frac{\sqrt{\frac{K_{sp_{CaF_2}}}{\left[Ca^{2+}\right]}}}{2} = \frac{\sqrt{\frac{K_{sp_{CaF_2}}}{c_o + S}}}{2}$$

Since *S* << *c*₀:

$$S = \frac{\sqrt{\frac{K_{sp_{CaF_2}}}{c_o + S}}}{\frac{2}{c_o}} = \frac{\sqrt{\frac{S_{sp_{CaF_2}}}{c_o}}}{\frac{2}{c_o}} = \frac{\sqrt{\frac{3.9 \times 10^{-11}}{0.100}}}{\frac{2}{c_o}} = 9.9 \times 10^{-6} \frac{\text{mol}}{1}$$