#10 Calculate the solubility S ($\frac{\text{mol}}{\text{L}}$) of CaF₂ in a Ca(NO₃)₂-solution 0.100 $\frac{\text{mol}}{\text{L}}$. $$K_{sp_{CaF_2}} = 3.9 \times 10^{-11}$$ ## **Solution** CaF₂(s) $$\longrightarrow$$ Ca²⁺(aq) + 2 F (aq) $K_{SPCaF_2} = \left[Ca^{2+} \right] \times \left[F^{-} \right]^2 = 3.9 \times 10^{-11}$ For every CaF₂-particle going into solution, 1 Ca²⁺-ion and 2 F⁻-ions are formed. When dissolving in water, we can conclude that $[Ca^{2+}] = S$ and $[F^{-}] = 2.S$. Because we are dissolving CaF_2 in a $Ca(NO_3)_2$ -solution, containing Ca^{2+} , the former expression no longer holds: most of the Ca^{2+} -ions were already present (supplied by the $Ca(NO_3)_2$) and only a few were supplied by the dissolving of CaF_2 . So we have to calculate the solubility starting from the latter equation: $$[F^-] = 2.S$$ or $S = \frac{F^-}{2}$. And since $$\left[F^{-}\right] = \sqrt{\frac{K_{sp_{CaF_2}}}{\left[Ca^{2+}\right]}}$$, the solubility in this case is $S = \frac{\sqrt{\frac{K_{sp_{CaF_2}}}{\left[Ca^{2+}\right]}}}{2}$ As we already mentioned, there are two kinds of Ca²⁺–ions in the saturated solution: - Ca^{2+} -ions already present before dissolving CaF_2 : c_0 - Ca²⁺-ions supplied by the dissolving of CaF₂: S $$S = \frac{\sqrt{\frac{K_{sp_{CaF_2}}}{\left[Ca^{2+}\right]}}}{2} = \frac{\sqrt{\frac{K_{sp_{CaF_2}}}{c_o + S}}}{2}$$ Since *S* << *c*₀: $$S = \frac{\sqrt{\frac{K_{sp_{CaF_2}}}{c_o + S}}}{\frac{2}{c_o}} = \frac{\sqrt{\frac{S_{sp_{CaF_2}}}{c_o}}}{\frac{2}{c_o}} = \frac{\sqrt{\frac{3.9 \times 10^{-11}}{0.100}}}{\frac{2}{c_o}} = 9.9 \times 10^{-6} \frac{\text{mol}}{1}$$