#9

15.00 mL 0.120 $\frac{\text{mol}}{\text{L}}$ Zn(NO₃)₂ and 10.00 mL 0.100 $\frac{\text{mol}}{\text{L}}$ Na₂CrO₄ are poured together. The solubility product of ZnCrO₄ is 2.5.10⁻⁹. Will a precipitation be formed or not? If so, which one?

Solution

The following ions are present in the mixture: Zn^{2+} , NO_3^{-} , Na^{+} and CrO_4^{-2-} .

In theory, two precipitations can be formed: ZnCrO₄ and NaNO₃.

The precipitation of NaNO₃ will not be formed: the solubility of NaNO₃ in water is very large.

$$Zn^{2+}(aq) + CrO_4^{2-}(aq) \longrightarrow ZnCrO_4(s)$$

This precipitation will only occur when $\left[\text{Zn}^{2^+} \right] \times \left[\text{CrO}_4^{2^-} \right] > K_{sp_{\text{ZnCrO}_4}} \left(= 2.5 \times 10^{-9} \right)$.

The concentration of Zn²⁺ in the mixture is

$$\frac{15.00\times10^{-3}L\times0.120\frac{mol}{L}}{25.00\times10^{-3}L} = \frac{1.80\times10^{-3}mol}{25.00\times10^{-3}L} = 7.20\times10^{-2}\frac{mol}{L}.$$

The concentration of $\text{CrO}_4^{\ 2^-}$ in the mixture is

$$\frac{10.00\times10^{-3}L\times0.100\frac{\text{mol}}{L}}{25.00\times10^{-3}L} = \frac{1.00\times10^{-3}\text{mol}}{25.00\times10^{-3}L} = 4.00\times10^{-2}\frac{\text{mol}}{L}.$$

So:

$$\left[\mathsf{Zn^{2+}}\right] \times \left[\mathsf{CrO_4^{2-}}\right] = \left(7.20 \times 10^{-2}\right) \times \left(4.00 \times 10^{-2}\right) = 2.88 \times 10^{-3} > K_{\mathit{sp}_{\mathsf{ZnCrO_4}}} \left(=2.5 \times 10^{-9}\right)$$

So there will be a precipitation of ZnCrO₄.