Ionic Equilibriums in Water

#8

The solubility product of Pb(IO₃)₂ is 2.6.10⁻¹³ at 25°C. Calculate the solubility ($\frac{\text{mol}}{\text{L}}$) of Pb(IO₃)₂ at 25°C. The molar mass of Pb(IO₃)₂ is 557.0 $\frac{\text{g}}{\text{mol}}$.

Solution

Dissociation:
$$Pb(IO_3)_2(s) \longrightarrow Pb^{2+}(aq) + 2IO_3(aq)$$

For every $Pb(IO_3)_2$ -particle going into solution, $1 Pb^{2+}$ -ion and $2 IO_3^-$ -ions are formed.

So:
$$[Pb^{2+}] = S$$
 and $[IO_3^{-}] = 2.S$

Thus:
$$K_{sp} = \left[Pb^{2+} \right] \times \left[IO_3^{2-} \right]^2 = S \times (2S)^2 = 4S^3$$

$$S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{2.6 \times 10^{-13}}{4}} = \sqrt[3]{6.5 \times 10^{-14}} = 4.0 \times 10^{-5} \frac{\text{mol}}{\text{L}}$$