Ionic Equilibriums in Water ## #6 Titration of 25.0 mL H_3PO_4 -solution (with unknown concentration) with 0.110 mol/L NaOH(aq). The first equivalence point is reached after adding 26.4 mL NaOH. - 1. Calculate the original H₃PO₄-concentration. - 2. Calculate the pH at the start of the titration (0 mL added). - 3. Calculate the pH at the first equivalence point. - 4. Which volume of NaOH(aq) must be added to reach the second equivalence point. ## **Solutions** Reaction 1: $$1 H_3PO_4(aq) + 1 NaOH(aq)$$ \longrightarrow $H_2O + NaH_2PO_4(aq)$ 1. At the first EP the total amount of H₃PO₄ has reacted and is converted into NaH₂PO₄. 26.4 mL 0.110 mol/L NaOH(aq) contains $$26.4 \times 10^{-3} L \times 0.110 \frac{\text{mol}}{L} = 2.90 \times 10^{-3} \text{ mol of NaOH}.$$ So the original H_3PO_4 -solution also contained 2.90×10^{-3} mol of H_3PO_4 . The unknown H₃PO₄-concentration was $$\frac{2.90\times10^{-3}\text{ mol}}{25.0\times10^{-3}\text{ L}}$$ = 0.116 $\frac{\text{mol}}{\text{L}}$. 2. At the start we have a H₃PO₄-solution 0.116 mol/L. H₃PO₄ is a rather weak acid, partially reacting with water: $$H_3PO_4 \longrightarrow H^+ + H_2PO_4^-$$ The second step can be neglected! | mol/L | H ₃ PO ₄ | H ⁺ | H ₂ PO ₄ | |-----------------|--------------------------------|----------------|--------------------------------| | Before reaction | 0.116 | 0 | 0 | | Δ | -x | +χ | +χ | | After reaction | 0.116 – x | Х | Х | $$K_{a_{1}_{H_{3}PO_{4}}} = \frac{\left[H^{+}\right] \times \left[H_{2}PO_{4}\right]}{\left[H_{3}PO_{4}\right]} = 7.5 \times 10^{-3}$$ $$\frac{x^{2}}{0.116 - x} = 7.5 \times 10^{-3}$$ $$x^{2} + 7.5 \times 10^{-3} \times -8.7 \times 10^{-4} = 0$$ $$x = 0.026$$ | mol/L | HOAc | H ⁺ | OAc ⁻ | |----------------|-------|----------------|------------------| | After reaction | 0.090 | 0.026 | 0.026 | $$pH = -log \ 0.026 = 1.59.$$ 3. After adding 26.4 mL NaOH (first EP), containing $26.4 \times 10^{-3} L \times 0.110 \frac{\text{mol}}{L} = 2.90 \times 10^{-3} \text{ mol of NaOH:}$ | mole | H ₃ PO ₄ | NaOH | NaH ₂ PO ₄ | |-----------------|--------------------------------|------------------------|----------------------------------| | Before reaction | 2.90×10 ⁻³ | 2.90×10 ⁻³ | 0 | | Δ | -2.90×10 ⁻³ | -2.90×10 ⁻³ | +2.90×10 ⁻³ | | After reaction | 0 | 0 | 2.90×10 ⁻³ | $(Na^{+})H_{2}PO_{4}^{-}$: salt, containing the ampholyte $H_{2}PO_{4}^{-}$. $$pH = \frac{1}{2} \left(pK_{a} + pK_{a}^{'} \right)$$ $$= \frac{1}{2} \left(pK_{a}_{H_{2}PO_{4}^{'}} + pK_{a_{H_{3}PO_{4}}} \right)$$ $$= \frac{1}{2} \left(pK_{a_{2}_{H_{3}PO_{4}}} + pK_{a_{1}_{H_{3}PO_{4}}} \right)$$ $$= \frac{1}{2} \left(7.21 + 2.12 \right)$$ $$= 4.67$$ 4. If we add more NaOH when reaction 1 $$1 H_3PO_4(aq) + 1 NaOH(aq)$$ \longrightarrow $H_2O + NaH_2PO_4(aq)$ is completed, reaction 2 $$1 \text{ NaH}_2\text{PO}_4 \text{ (aq)} + 1 \text{ NaOH(aq)} \longrightarrow \text{H}_2\text{O} + \text{Na}_2\text{HPO}_4 \text{(aq)}$$ will occur. If we need 26.4 mL of NaOH to complete reaction 1, we will need an extra 26.4 mL to complete reaction 2. So we will reach the second EP after adding 52.8 mL of NaOH. 5. At the second EP, the original amount of 2.90×10^{-3} mol of H_3PO_4 will be converted into 2.90×10^{-3} mol of $(Na^+)_2HPO_4^{\ 2^-}$. This salt contains the ampholyte $HPO_4^{\ 2^-}$. $$pH = \frac{1}{2} \left(pK_{a} + pK_{a}^{'} \right)$$ $$= \frac{1}{2} \left(pK_{a_{HPO_{4}^{2^{-}}}} + pK_{a_{H2PO_{4}^{-}}} \right)$$ $$= \frac{1}{2} \left(pK_{a_{3_{H3PO_{4}}}} + pK_{a_{2_{H3PO_{4}}}} \right)$$ $$= \frac{1}{2} (12.65 + 7.21)$$ $$= 9.93$$