Titration of 10.0 mL HOAc-solution (with unknown concentration) with 0.108 mol/L NaOH(aq). The equivalence point is reached after adding 10.4 mL NaOH.

- 1. Calculate the original HOAc-concentration.
- 2. Calculate the pH at the start of the titration (0 mL added).
- 3. Calculate the pH after adding 5.0 mL NaOH.
- 4. Calculate the pH after adding 10.4 mL NaOH (EP).
- 5. Calculate the pH after adding 15.0 mL NaOH.

Solutions

Reaction: 1 HOAc(aq) + 1 NaOH(aq)
$$\longrightarrow$$
 H₂O + NaOAc(aq)

1. At the EP the total amount of HOAc has reacted.

10.4 mL 0.108 mol/L NaOH(aq) contains
$$10.4 \times 10^{-3} \text{L} \times 0.108 \ \frac{\text{mol}}{\text{L}} = 1.12 \times 10^{-3} \ \text{mol of NaOH}.$$

So the original HOAc-solution also contained 1.12×10^{-3} mol of HOAc.

The unknown HOAc-concentration was
$$\frac{1.12 \times 10^{-3} \text{ mol}}{10.0 \times 10^{-3} \text{ L}} = 0.112 \frac{\text{mol}}{\text{L}}$$
.

2. At the start we have a HOAc-solution 0.112 mol/L. HOAc is a weak acid, partially reacting with water:

$$HOAc \rightarrow H^{+} + OAc^{-}$$

mol/L	HOAc	H ⁺	OAc ⁻
Before reaction	0.112	0	0
Δ	-x	+χ	+x
After reaction	0.112 - x	Х	Х

$$K_{\mathsf{a}_{\mathsf{HOAc}}} = \frac{\left[\mathsf{H}^{\mathsf{+}}\right] \times \left[\mathsf{OAc}^{\mathsf{-}}\right]}{\left[\mathsf{HOAc}\right]} = 1.8 \times 10^{-5}$$

$$\frac{x^2}{0.112 - x} = 1.8 \times 10^{-5}$$

$$x^2 + 1.8 \times 10^{-5} x - 2.0 \times 10^{-6} = 0$$

$$x = 0.0014$$

mol/L	HOAc	H ⁺	OAc ⁻
After reaction	0.111	0.0014	0.0014

$$pH = -log \ 0.0014 = 2.85.$$

3. After adding 5.0 mL NaOH, containing $5.0 \times 10^{-3} L \times 0.108 \frac{\text{mol}}{l} = 5.40 \times 10^{-4} \text{ mol of NaOH}$:

mole	HOAc	NaOH	NaOAc
Before reaction	1.12×10 ⁻³	5.40×10 ⁻⁴	0
Δ	-5.40×10 ⁻⁴	-5.40×10 ⁻⁴	+5.40×10 ⁻⁴
After reaction	5.80×10 ⁻⁴	0	5.40×10 ⁻⁴

At this moment, we have a buffer solution: HOAc / OAc .

$$pH_{buffer} = pK_{a_{HOAc}} + log \frac{[B]}{[A]} = 4.75 + log \frac{\frac{5.40 \times 10^{-4} mol}{0.015 L}}{\frac{5.80 \times 10^{-4} mol}{0.015 L}} = 4.72.$$

4. After adding 10.4 mL NaOH (EP), containing $10.4 \times 10^{-3} L \times 0.108 \frac{\text{mol}}{l} = 1.12 \times 10^{-3} \text{ mol of NaOH}$:

mole	HOAc	NaOH	NaOAc
Before reaction	1.12×10^{-3}	1.12×10 ⁻³	0
Δ	-1.12×10 ⁻³	-1.12×10 ⁻³	+1.12×10 ⁻³
After reaction	0	0	1.12×10 ⁻³

(Na⁺)OAc⁻ (basic salt) reacts partially with water:

$$OAc^{-} + H_2O \longrightarrow HOAc + OH^{-}$$

mol/L	OAc ⁻	HOAc	OH ⁻
Before reaction	0.0467	0	0
Δ	-x	+χ	+x
After reaction	0.0467 – x	Х	Х

$$K_{b_{OAc^{-}}} = \frac{[HOAc] \times [OH^{-}]}{[OAc^{-}]} = 5.6 \times 10^{-10}$$

$$\frac{x^{2}}{0.0467 - x} = 5.6 \times 10^{-10}$$

$$x^{2} + 5.6 \times 10^{-10} \times -2.6 \times 10^{-11} = 0$$

$$x^2 + 5.6 \times 10^{-20} x - 2.6 \times 10^{-21} = 0$$

$$x = 5.1 \times 10^{-6}$$

mol/L	OAc ⁻	HOAc	OH_
After reaction	0.0467	5.1×10 ⁻⁶	5.1×10 ⁻⁶

$$pOH = -log 5.1 \times 10^{-6} = 5.29 \implies pH = 8.71.$$

5. After adding 15.0 mL NaOH, containing $15.0 \times 10^{-3} L \times 0.108 \frac{\text{mol}}{l} = 1.62 \times 10^{-3} \text{ mol of NaOH}$:

mole	HOAc	NaOH	NaOAc
Before reaction	1.12×10 ⁻³	1.62×10 ⁻³	0
Δ	-1.12×10 ⁻³	-1.12×10 ⁻³	+1.12×10 ⁻³
After reaction	0	5.00×10 ⁻⁴	1.12×10 ⁻³

NaOAc is a weak basic salt and can be neglected.

So the pH is determined by the strong base NaOH: completely dissociated. So the pOH = 1.70 and pH = 12.30.