Ionic Equilibriums in Water

#4

Titration of 10.0 mL HCl-solution (with unknown concentration) with 0.113 mol/L NaOH(aq). The equivalence point is reached after adding 11.2 mL NaOH.

- 1. Calculate the original HCl-concentration.
- 2. Calculate the pH at the start of the titration (0 mL added).
- 3. Calculate the pH after adding 5.0 mL NaOH.
- 4. Calculate the pH after adding 11.2 mL NaOH (EP).
- 5. Calculate the pH after adding 15.0 mL NaOH.

Solutions

Reaction: 1 HCl(aq) + 1 NaOH(aq) \longrightarrow $H_2O + NaCl(aq)$

- 1. At the EP the total amount of HCl has reacted.
 - 11.2 mL 0.113 mol/L NaOH(aq) contains $11.2 \times 10^{-3} \text{L} \times 0.113 \frac{\text{mol}}{\text{L}} = 1.27 \times 10^{-3} \text{ mol of NaOH}.$

So the original HCl-solution also contained 1.27 \times 10 $^{-3}$ mol of HCl.

The unknown HCl-concentration was $\frac{1.27 \times 10^{-3} \text{ mol}}{10.0 \times 10^{-3} \text{ L}} = 0.127 \frac{\text{mol}}{\text{L}}$.

2. At the start we have a HCl-solution 0.127 mol/L.

As HCl is a strong acid (completely ionized), the H^+ -concentration also is 0.127 mol/L. $pH = -log \ 0.127 = 0.90$.

3. After adding 5.0 mL NaOH, containing $5.0 \times 10^{-3} L \times 0.113 \frac{\text{mol}}{L} = 5.65 \times 10^{-4} \text{ mol of NaOH}$:

mole	HCl	NaOH	NaCl
Before reaction	1.27×10 ⁻³	5.65×10 ⁻⁴	
Δ	-5.65×10 ⁻⁴	-5.65×10 ⁻⁴	+5.65×10 ⁻⁴
After reaction	7.05×10 ⁻⁴	0	5.65×10 ⁻⁴

The NaCl (neutral salt) has no influence on the pH.

So the pH is determined by the strong acid HCl. The HCl-concentration at this moment is

$$\frac{7.05 \times 10^{-4} \text{ mol}}{15.0 \times 10^{-3} \text{ L}} = 0.0470 \frac{\text{mol}}{\text{L}} \text{ and pH} = -\text{log } 0.0470 = 1.33.$$

4. After adding 11.2 mL NaOH (EP), containing $11.2 \times 10^{-3} \text{L} \times 0.113 \frac{\text{mol}}{\text{I}} = 1.27 \times 10^{-3} \text{ mol of NaOH}$:

mole	HCl	NaOH	NaCl
Before reaction	1.27×10 ⁻³	1.27×10 ⁻³	
Δ	-1.27×10 ⁻³	-1.27×10 ⁻³	+1.27×10 ⁻³
After reaction	0	0	1.27×10 ⁻³

The NaCl (neutral salt) has no influence on the pH. So the pH = 7.00.

5. After adding 15.0 mL NaOH, containing $15.0 \times 10^{-3} \text{L} \times 0.113 \frac{\text{mol}}{\text{L}} = 1.70 \times 10^{-3} \text{ mol of NaOH}$:

mole	HCl	NaOH	NaCl
Before reaction	1.27×10 ⁻³	1.70×10 ⁻³	
Δ	-1.27×10 ⁻³	-1.27×10 ⁻³	+1.27×10 ⁻³
After reaction	0	4.30×10 ⁻⁴	5.65×10 ⁻⁴

The NaCl (neutral salt) has no influence on the pH.

So the pH is determined by the strong base NaOH. The NaOH-concentration at this moment is $\frac{4.30\times10^{-4} \text{ mol}}{25.0\times10^{-3} \text{ L}} = 0.0172 \frac{\text{mol}}{\text{L}}$ and pOH = -log

 $0.0172 = 1.76 \Rightarrow pH = 12.24$.