Ionic Equilibriums in Water

#1

In a volumetric flask of 500,0 mL we put 2,456 g NaOAc. We add 25.0 mL HOAc 1.00 mol/L. We fill with water. Calculate pH.

Solution

NaOAc:

$$2.456 \text{ g} = \frac{2.456 \text{ g}}{82.0 \frac{\text{g}}{\text{mol}}} = 0.0300 \text{ mol}$$

25.0 mL HOAc 1.00 mol/L contains 0.0250 mol HOAc.

The concentrations in the mixture are:

NaOAc:
$$\frac{0.0300 \text{ mol}}{0.500 \text{ L}} = 0.0600 \frac{\text{mol}}{\text{L}}$$

HOAc:
$$\frac{0.0250 \text{ mol}}{0.500 \text{ L}} = 0.0500 \frac{\text{mol}}{\text{L}}$$

NaOAc is a salt, completely dissociated: NaOAc(aq) \rightarrow Na⁺(aq) + OAc⁻(aq)

Na = weak acid, weaker than water

HOAc = conjugate weak acid A

The mixture is a buffer solution.

$$pH_{buffer} = pK_{a_{HOAc}} + log \frac{[B]}{[A]} = 4.75 + log \frac{0.0600 \frac{mol}{L}}{0.0500 \frac{mol}{L}} = 4.83$$